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Thermodynamic Properties of Nitrogen Molecules 
at High Temperatures t 

R. Phair, 2 L. Biolsi,  2 and P. M. Holland 3 

Calculations of the second virial coefficients and their derivatives for the 
Hulburt Hirschfelder (HH) and other accurate interaction potentials are used 
to determine the thermodynamic properties of nitrogen at high temperatures. 
Unlike the usual methods employing partition functions, which are most 
accurate at low temperatures where the energy levels are precisely known, the 
virial coefficient method depends on integrating over potential energy functions 
which provide a useful description of energies even near the top of the potential 
well, a region where the vibrational-rotational energy levels are not readily 
accessible. This makes this method particularly useful for predicting high-tem- 
perature properties outside the range of laboratory measurements and beyond 
the useful limits of the partition function approach. In the present work, we use 
the virial coefficient method to predict the heat capacities and enthalpies of 
nitrogen up to 25,000 K. 

KEY WORDS: enthalpy; heat capacity; high temperatures; nitrogen; viriat 
coefficients. 

1. I N T R O D U C T I O N  

This paper presents theoretical calculations of the thermodynamic proper- 
ties of molecular nitrogen at high temperatures. Accurate high-temperature 
gas-phase thermophysical properties are essential for understanding, 
modeling, and/or predicting many important processes. Knowledge of the 
high-temperature thermophysical properties of molecular nitrogen is 
important in understanding upper atmospheric chemistry [1], for under- 
standing and predicting the ablation process of heat shields [2-8], and for 
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predicting the heating rates at aircraft and spacecraft surfaces [9-12], espe- 
cially during atmospheric entry. The method we use for these calculations 
is based on numerical evaluation of the second virial coefficients and their 
derivatives using accurate interaction potentials for the various electronic 
states of N2. These results are then degeneracy averaged over the con- 
tributing states [ 13 ]. 

2. THE PARTITION FUNCTION APPROACH 

The usual way in which thermodynamic properties are calculated is 
via the partition function [14]. For 1 tool of an ideal diatomic gas the 
partition function, Q, is written as 

1 
Q = :No ---7 (qnuqtrqin) N~ (1) 

where No is Avogadro's number, the q's signify contributions to the parti- 
tion functions of a single molecule from the various degrees of freedom, 
and the subscripts nu, tr, and in denote nuclear, translational, and internal 
contributions to the partition function, respectively. The various thermo- 
dynamic properties depend on the derivatives of Q or the derivatives of 
In(Q) [14]. 

The international partition function, qin, consists of contributions 
from the electronic, vibrational, and rotational degrees of freedom. The 
contributions from vibration and rotation in each electronic state vary 
since the spectroscopic constants for each electronic state [14] are dif- 
ferent. The vibrational-rotational partition function in the nth electronic 
state, qn, is given by 

q. = ~ gs exp( -e~,s /kT ) (2) 
v, j  

where v is the vibrational quantum number, j is the rotational quantum 
number, gj is the rotational degeneracy, e~.j is the rotational vibrational 
energy in electronic state n, k is Boltzmann's constant, and T is the tem- 
perature. The result for ql, is obtained by summing over all electronic 
states; i.e. [14], 

qin =-Y'. qng,, exp(-e,,/kT) (3) 
n 

where gn is the electronic degeneracy and en is the energy at the minimum 
of the nth electronic potential energy curve. 
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At low and intermediate temperatures, the vibrational-rotational 
energy is given quite accurately for most diatomic molecules by the expres- 
sion [14] 

= v+ ~ o ~ + j ( j + l ) B ~ -  v+ ~ e z ~ - j 2 ( j + l ) Z D "  

-- v + ~  j ( j + l ) ~  (4) 

where h is Planck's constant, c is the speed of light, ~o~ is the fundamental 
vibrational frequency, Ben is the rotational constant, ~oeZ~ is the anhar- 
monicity constant, D" is the centrifugal stretching constant, and ~ is the 
vibration-rotation coupling constant, all in cm-1 for the n th electronic 
state. The experimental spectroscopic constants are known for one or more 
electronic states for most diatomic molecules [15, 16]. 

The first two terms in Eq. (4) account for harmonic oscillation and 
rigid rotation, respectively, and the last three terms are correction terms 
due to anharmonic oscillation, nonrigid rotation and vibration-rotation 
coupling, respectively. Explicit useful expressions for the partition function 
for this model are available [14, 17]. These expressions are commonly used 
to obtain the thermodynamic data found in several sources such as the 
JANAF thermochemical tables [18] and elsewhere [19]. 

At high temperatures high v and j states are populated and Eq. (4) 
does not accurately represent the vibrational-rotational energy levels 
[20-23] for such states. Thus both the partition function and any thermo- 
dynamic properties calculated by, using Eq. (4) are incorrect for diatomic 
molecules at high temperatures. At such temperatures, more accurate 
results [20--24] for the partition function and the thermodynamic proper- 
ties can be obtained by calculating the second virial coefficient, B, for two 
interacting atoms and then calculating the partition function and thermo- 
dynamic properties [ 14]. This is the procedure we use in the present work. 

3. THERMODYNAMIC CALCULATIONS USING VIRIAL 
COEFFICIENTS 

The virial coefficient method is based on treating all of the different 
molecular species that may exist as an imperfect monatomic gas described 
by the virial equation of state with nonideal behavior due to both the inter- 
actions between the atoms and excluded volume effects. This is a cluster 
approach to the problem and clusters containing larger species than 
diatomic molecules can also be treated [14, 25 29]. 
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For the system of interest in this paper, consider the equilibrium 
between nitrogen atoms and nitrogen molecules, i.e., 

2N(g) ~ N2(g) (5) 

The equilibrium constant for this reaction can be written as 

K~ 1 q ( N j / V  
Kp = RT  = kT  {q(N)/V} 2 (6) 

where Kp is the equilibrium constant in terms of pressure, Kc is the equi- 
librium constant in concentration units, V is the volume of the system, 
q(N) is the partition function for N, and q(N2) is the partition function for 
N2. We can also show that [25] 

B(T) : -K~ (7) 

where B(T) is the second virial coefficient. Classically, B(T) is given by 
[-14] 

B(T)=2HN o [ 1 - e  v~r)/kT] r 2 dr (8) 

Here r is the separation between the nitrogen,atoms and V(r) is the poten- 
tial energy of the molecule. Since q(N) depends only on mass, temperature, 
and volume, Eqs. (6), (7), and (8) can be used to find q(N2) in terms of the 
potential. The result is [20, 23] 

(2HmNkI~3 V__V_ 
q(N2) = -B (T)  \ h 2 J No g~ e-D~ (9) 

where mN is the mass of a nitrogen atom, go(N) is the degeneracy of the 
ground electronic state of the atom, and Do is the spectroscopic dissocia- 
tion energy for the ground electronic state of N2. The zero of energy is 
taken to be the molecule in its lowest vibrational-rotational energy level. 

At high temperatures, excited electronic states of the atoms and 
molecules contribute to the partition function. In this case, B(T) is 
calculated using [21] 

~-,i Bi( T) gi(N2) e-e~/~r 
B(T)= (~2jgj(N) e--EdkT) 2 (10) 

where i denotes a sum over molecular states, j denotes a sum over atomic 
states, g i ( N j  represents the electronic degeneracies of N2, gj(N) represents 
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the electronic degeneracies of N, Ei is the energy of a molecule in electronic 
state i, E i is the energy of an atom in electronic state j, and Bi is the second 
virial coefficient for the ith potential energy curve of N2. 

It is usually more convenient to work in terms of the reduced virial 
coefficients, B*(T*), which are defined by 

B(T)=boB*(T*)  (11) 

where 

and 

;5 B*(T*) = 3 [1 - -  e -  V*(r*)/r*] r,2 dr* (12) 

r V 
r* = -  V* = -- T* = 

Here a is the effective rigid sphere diameter, e is the depth of the potential 
energy well, and bo is the rigid sphere second virial coefficient, given by 

2H 3 
b o = ~ - a  (13) 

Thus q(N2) can be written in terms of B*(T*) and the thermodynamic 
properties are given by [23] 

and 

where 

H ~ - H ~ = RT(4 + B*/B*) 

C o = R{4 + 2B*/B* + B*/B* - (B~/B*) 2 } 

(14) 

(15) 

(d~B*~ (16) 
B.* = ( T * )  ~ \dT*"/ 

4. INTERACTION POTENTIALS FOR Nz 

Equations (14) and (15) are useful for calculating the thermodynamic 
properties of N 2 only if we have accurate potentials for the ground elec- 
tronic state and for several excited electronic states. We have recently 
developed a technique [30, 31] for calculating the thermophysical proper- 
ties of diatomic molecules by using the Hulburt-Hirschfdder (HH) poten- 
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tial. This potential is based on the spectroscopic constants and is probably 
the most accurate general-purpose atom-atom potential [32, 33]. We have 
previously demonstrated that it accurately mimics experimental RKR 
potential energy curves [ 11, 12, 34-37] and that it can be used to calculate 
very accurate transport properties and second virial coefficients [34-36]. It 
is also possible to use this potential form to fit ab initio quantum mechani- 
cal potential energy curves very accurately [11, 35-37]. 

We have previously calculated the transport properties of nitrogen 
atoms [-11 ] by accurately representing either spectroscopic (HH) or quan- 
tum mechanical potential energy curves for the four electronic states of N2 
that dissociate to ground state (4S) atoms; the X1S2, A3S +, 5S+, and 
7X+ states. In the present work we apply these potential energy curves in 
calculating the thermodynamic properties of N 2. Furthermore, enough 
spectroscopic data is available for excited electronic states of N2 to allow 
us to include many additional electronic states that contribute to the ther- 
modynamic properties of N2 at high temperatures. Thus we can accurately 
represent the potentials needed at temperatures up to 25,000 K for N2 and 
accurately calculate the second virial coefficient, and derivatives, needed to 
obtain the thermodynamic properties. This procedure is inherently more 
accurate at high temperatures than the procedure involving summations 
over the vibrational and rotational energy levels. 

Table I lists the 16 bound electronic states of N2 that we have used in 
our calculations. They are listed in order of increasing energy at the mini- 
mum in the potential. A diagram of the potential energy curves is shown 
in Fig. 1. For most states, the six spectroscopic constants required for the 
HH potential are readily available [16, 38-41] and we have directly used 
these to obtain the appropriate potentials. However, in the case of the 5S2 
and 7.~V'u+ states, the ab initio quantum mechanical potentials were used, as 
described previously [11]. The E3Z'g state was fit with the Morse poten- 
tial since the spectroscopic constants required to use the HH potential are 
not available. 

At 25,000 K, the states in Table I comprise 94 % of the occupied states 
(based on an equilibrium calculation using 34 states). The second virial 
coefficients, and their derivatives, have been calculated for the states listed 
in Table I by using the HH and Morse potentials. The virial coefficients 
and their derivatives were calculated by using the Gauss-Kronrod 
integrator in the QUADPACK software collection [42] and also by using 
a procedure developed previously [-43, 44]. Agreement is excellent. 
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Table I. States of N2 Included in These Calculations 

207 

Dissociation 
State De (1019 j)o products b Ref. No. c 

X~Z~ 15.87 4S + 4S 16 
A3Zu + 5.808 48 -r- 45 16 
B3Hg 7.845 4S + ZD 16 
WSAu 7.808 4S + 2D 38, 39 
B'3Z'~ 8.434 4 S + 2p 16 
a'tZu 9.969 2D + 2D 16 
alHg 9.756 ZD + 2D 16 
waA~ 9.186 ZD + 2D 16 
sX+ 0.1634 4S + 4S 12 
7Z+ 0.008437 4S ~- 48 12 
G3Ag 2.221 4S + 2D 38, 40 
C3Hu 1.982 4S + 2D 16, 38 
E3S  + 0.6468 4S + 2D 16, 38 
C'3Hu 0.1432 4S + 2D 38, 41 
b'lS + 4.804 2D + 2D 16, 38 
H3~bu 2.507 2D + 2D 16, 38 

a De is the electronic dissociation energy. 
b The atomic states to which the molecular state dissociates. 
c Sources for the spectroscopic constants used for these calculations. 
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Fig, 1. Potential energies of 16 electronic states of 
nitrogen as a function of internuclear separation. The states 
are listed in Table I. 
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5. RESULTS AND C O N C L U S I O N  

Results for the thermodynamic properties are given in Table II along 
with comparisons with previous results from Balakrishnan [19] .  The 
results for C o and o 0 H r -  H o from Refs. 18 and 19 are nearly the same. At 
the lowest temperatures our results, using the B(T) method, differ by a few 
percent from those obtained using Eq. (4). Since Eq. (4) should represent 
the energy levels of N2 accurately at low temperatures, the results in Ref. 19 
are likely to be more accurate here. At intermediate temperatures (e.g., 
7000 K) there is only about a 1% difference between the two methods. 
Much of this difference is probably due to the classical approximation used 
to calculate B(T). The good agreement of results at low and intermediate 
temperatures indicates that the potential energy curves we use are accurate. 

Table IL Thermodynamic Properties of N 2 

cal �9 mol 1 kcal .mo l -1  

v ( K )  c ~ ~ c ~  [ H o _ h , o ] o  0 o [Hx--H o] 

2,000 9.012 8.594 14.578 15.487 
3,000 9.053 8.841 23.609 24.222 
4,000 9.094 8.958 32.681 33.125 
5,000 9.143 9.033 41.799 42.116 
6,000 9.204 9.100 50.972 51.173 
7,000 9.296 9.200 60.220 60.307 
8,000 9.448 9.387 69.958 69.577 
9,000 9.691 9.725 79.196 79.104 

10,000 10.037 10.268 89.140 89.065 
11,000 10.481 11.046 99.570 99.684 
12,000 10.979 12.043 110.60 111.19 
13,000 11.474 13.204 122.30 123.77 
14,000 11.898 14.437 134.65 137.54 
15,000 12.196 15.630 147.55 152.52 
16,000 12.331 16.679 160.85 168.60 
17,000 12.299 17.505 174.33 185.61 
18,000 12.114 18.064 187.79 203.29 
19,000 11.806 18.354 201.06 221.37 
20,000 11.412 18.400 213.98 239.60 
21,000 10.969 18.248 226.46 257.76 
22,000 10.505 17.947 238.44 275.68 
23,000 10.044 17.547 249.89 293.23 
24,000 9.601 17.092 260.81 310.35 
25,000 9.184 16.612 271.22 326.98 

Results obtained in this work. 
b Results given in Ref. 19. 



Thermodynamic Properties of Nitrogen 209 

At high temperatures the results obtained by the two methods begin to 
diverge substantially, with differences up to 50 % at 20,000 K. We believe 
that the primary reason for these large differences at high temperatures is 
that the partition function method based on Eq. (4) does not accurately 
reproduce the vibrational and rotational energy levels at high values of the 
quantum numbers. 

The accuracy of the virial coefficient approach depends on the 
accuracy of the potentials used and the accuracy of the classical 
approximation for B ( T ) ,  which should be excellent at high temperatures 
[25]. We have previously compared [11] our HH potentials for N2 with 
the RKR potentials [38] for the XlZ'~ and A 3 Z  + states and find them to 
be in excellent agreement, especially at the values of r which contribute 
most significatly to the virial coefficients [34, 45, 46]. We have also per- 
formed comparisons with the RKR potential [38] for the excited b'lX+~ 

state (which dissociates to two excited state atoms) and find very good 
agreement. These results demonstrate that the HH potential accurately 
models the "true" potential energy curves for N2. 

Other results from our previous calculations of the virial coefficients 
for lithium [35] and sodium [36] using the HH  potential are in excellent 
agreement with careful quantum mechanical calculations of the second 
virial coefficient [25]. Also, our calculations of the second virial coefficient 
of argon [34] using the HH potential show excellent agreement with 
Kestin and co-workers' [47] comprehensive correlation of experimental 
results at temperatures above 1500 K. Based on these considerations, we 
estimate the errors in the results we report using the virial coefficient 
method in the present work to be 10 % or less. 
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